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1. Introduction

Spinning disks are widely used in optical disk and hard disk drives to store text, audio, image or
video information. As the disk drives increasingly require faster data processing rates and higher
recording density, vibration becomes one of main issues to be resolved in developing reliable disk
drives. In particular, optical disk drives such as CD-R, CD-RW or DVD drives have an additional
vibration source due to the misalignment between the axis of symmetry and the axis of rotation,
compared to hard disk drives. Since most of the hard disks are precisely assembled with a spindle
by a rigid clamp and they are not removed during its lifetime, the misalignment in the hard disk
drives does not attract attention. However, the optical disks are removable and fixed by a
magnetic clamp, so the axis of symmetry does not always coincide with the axis of rotation.
Since Southwell et al. [1,2] initiated a study on the vibration of a spinning disk, many

researchers have been interested in the vibration of spinning disks. Among them, several papers
were presented for imperfect spinning disks. Parker and Mote [3] analyzed the free vibration of
coupled, asymmetric disk–spindle systems in which both the disk and spindle are continuous and
flexible. Furthermore, Parker and Mote [4] presented a perturbation solution to predict natural
frequencies of stationary annular or circular plates with slight deviation from axisymmetry and
they discussed the mode split of the repeated natural frequencies. The transverse free and forced
vibrations of a spinning circular disk with rectangular orthotropy were studied by Phylactopoulos
and Adams [5,6]. They found that anisotropy of material caused the natural frequencies
corresponding to cosine and sine normal modes to split. Recently, Kim et al. [7] reported that
significant changes could occur to the natural frequencies and modes when a structure deviates
from axisymmetry because of circumferentially varying model features. In addition, Chang and
Wickert [8] investigated the forced vibration of a rotationally periodic structure when subjected to
travelling wave excitation. Related to optical disks, on the other hand, Chung et al. [9] studied
non-linear dynamic responses for a flexible spinning disk with angular acceleration.
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In this paper, vibration characteristics of a flexible spinning disk are analyzed when the axis of
symmetry is misaligned with the axis of rotation. With the assumption that the in-plane
displacements are in a steady state and the out-of-plane displacement is in a dynamic state, the
equations of both the in-plane and out-of-plane motions are derived from Hamilton’s principle.
From the equations of the in-plane motion, the exact solutions for the in-plane displacements are
obtained. Then, by putting the exact solutions into the equation of the out-of-plane motion, a
linear equation of motion is obtained for the out-of-plane displacement. This linear equation is
discretized by using the Galerkin method. With the discretized equations, namely, the ordinary
differential equation with respect to time, the effects of misalignment are investigated on the
natural frequencies, mode shapes and critical speed of a spinning disk.

2. Equations of motion

Consider a flexible spinning annular disk with constant angular speed O; in which the axis of
symmetry, C; is misaligned with the axis of rotation, O; as shown in Fig. 1. The amount of
misalignment is given by distance e between points C and O: The flexible spinning disk with
thickness h; mass density r; Young’s modulus E and the Poisson ratio n is homogeneous so that
the centroid and the centre of mass are the same. The spinning disk is clamped at the inner radius
r ¼ a by a rigid clamp and is free at the outer radius r ¼ b: The motion of the disk, in this study, is
described by the xyz-co-ordinate system that is fixed and rotating with the disk. Therefore, this
xyz-co-ordinate frame is called the rotating frame of reference or the body-fixed frame of
reference. In Fig. 1, the x-axis coincides with the extension of line OC; and the y-co-ordinate is
measured with respect to the x-axis. Since the xyz-co-ordinate system is fixed at the disk, the unit
vectors er and ey rotates along with the disk.
Denote the displacements in the r; y and z directions by u, v; and w; respectively. Since the

displacements u, v; and w are no longer axisymmetric due to misalignment e; they are functions of
the r- and y-co-ordinates. Assuming that the in-plane displacements u and v are in a steady state
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Fig. 1. Schematics of a spinning annular disk with misalignment.
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while the out-of-plane displacement w is in a dynamic state, the displacements can be assumed as

u ¼ uðr; yÞ; v ¼ vðr; yÞ; w ¼ wðt; r; yÞ: ð1Þ

The equations of motion and the associated boundary conditions for the misaligned disk can be
derived from Hamilton’s principle. During deriving the equations of motion, the disk is assumed
as the Kirhhoff plate and the in-plane inertia effects are neglected. Therefore, the equations for
the in-plane displacement u and v are, strictly speaking, equations of in-plane stress equilibrium.
The equations of motion for a spinning disk without misalignment can be found in some Refs.
[10,11]. When the spinning disk has misalignment, the equations of motion may be represented as
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where qr and qy are the radial and tangential membrane stresses, qry is the shear membrane stress,
D is the bending rigidity of the disk, and r2 is the bi-harmonic operator:
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Since the spinning disk is fixed at r ¼ a and free at r ¼ b; the associate boundary conditions are
given by

u ¼ 0; v ¼ 0; w ¼ 0;
@w

@r
¼ 0 at r ¼ a; ð7Þ
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It is interesting to see what happens in the equations of motion if misalignment e equals zero.
When e ¼ 0; the radial displacement u becomes a function of only r and the tangential
displacement v becomes zero. Hence, qr and qy become functions of only r and qry becomes zero.
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In this case, Eq. (3) is satisfied automatically and Eq. (2) reduces to

r2
d2u

dr2
þ r
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dr
� u ¼ �

1� n2

E
rO2r3; ð11Þ

which is the same as the conventional static equation of the in-plane motion for a spinning disk
[12]. On the other hand, it is valuable to check that Eq. (4) is transformed into the equation
governing the motion of the disk in the stationary frame of reference by using the relation

f ¼ y� Ot; ð12Þ

where f is measured counter-clockwise from the X -axis of the stationary frame of Ref. [10].

3. In-plane displacements

The exact solutions for the in-plane displacements are obtained from Eqs. (2) and (3). Since the
steady state equations are dependent on only r and y regardless of t and the in-plane
displacements u and v are periodic with respect to y; the in-plane displacements can be represented
by an infinite series of the basis functions, i.e.,
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Substitution of Eqs. (13) into Eqs. (2) and (3) leads to the fact that the series solutions can be
simplified as

uðr; yÞ ¼ U0ðrÞ þ U1ðrÞcos y; vðr; yÞ ¼ V1ðrÞsin y ð14Þ

because the right sides of Eqs. (2) and (3) have only cos y and sin y; respectively. Furthermore,
Eqs. (2) and (3) governing the in-plane motion may be expressed in terms of U0; U1 and V1:
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The associated boundary conditions for Eqs. (15)–(17) are given by

U0 ¼ U1 ¼ V1 ¼ 0 at r ¼ a; ð18Þ
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It is noted that, if U0 is replaced by u; Eq. (15) is identical to Eq. (11). This equation is an equation
for the steady state radial displacement of the spinning disk when the disk has no misalignment.
That is, U0 is the radial displacement due to the centrifugal force. On the other hand, Eqs. (16)
and (17) govern the radial and tangential displacements U1 and V1; which are generated by
misalignment e: If the misalignment is zero, then it is trivial that U1 and V1 become zero.
Consider how to derive the exact solutions for the equations of the in-plane motion given by

Eqs. (15)–(17), with the boundary conditions given by Eqs. (18)–(21). The exact solution U0 of
Eq. (14) with the associated boundary conditions is well known. This solution is given by
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Since Eqs. (16) and (17) are coupled by U1 and V1; it is necessary to rewrite them in matrix–vector
form in order to obtain the exact solutions for U1 and V1:
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According to the method of Frobenius [13], the homogeneous solution of Eq. (23) is assumed as
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and the particular solution is assumed as
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The homogeneous and particular solutions for U1 and V1 are easily determined by substituting
Eqs. (24) and (25) into Eq. (23). Summation of the homogeneous and particular solutions yields
the general solutions for U1 and V1: By applying the boundary conditions of Eqs. (18)–(21) to the
general solutions, the displacements due to the misalignment can be represented by
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where
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d1 ¼ �c1 þ
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Meanwhile, the membrane stresses, namely, the in-plane stresses can be expressed in terms of
U0, U1 and V1. These membrane stresses may be rewritten as
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4. Out-of-plane motion

The Galerkin method is used to obtain discretized equations from the equation of the out-of-
plane motion given by Eq. (4). The out-of-plane displacement w can be approximated by

w t; r; yð Þ ¼
XM

m¼0

XN

n¼0

WmnðrÞ½CmnðtÞcos nyþ SmnðtÞsin ny�; ð30Þ

where M and N are the numbers of the basis functions used in approximation of the radial and
tangential contributions respectively; Wmn is a basis function for the radial direction; Cmn and Smn

are functions of time. The basis function Wmn should be the comparison function, which satisfies
both the essential and natural boundary conditions. The radial basis function Wmn can be chosen
as

WmnðrÞ ¼ ðr � aÞmþ2ðamn þ bmnr þ cmnr2Þ; ð31Þ

where amn; bmn and cmn are constants to be determined by the natural boundary conditions and the
normalization condition. Applying the Galerkin method with Eq. (30), discretized equations can
be written in matrix–vector form

M .Tþ Kb þ Kp

 �

T ¼ 0; ð32Þ

where the superposed dots denote differentiation with respect to time;M is a mass matrix; Kb and
Kp are the stiffness matrices due to the bending rigidity and the membrane stresses; T is a column
vector that is a function of time.
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The natural frequencies of the out-of-plane motion are investigated with Eq. (32). The material
properties and dimensions used in the computations in this paper, if there is no other remark, are
given by a ¼ 15mm, b ¼ 65mm, h ¼ 1:2mm, r ¼ 1200 kg/m3, E¼ 65:5	 106 N/m2 and n ¼ 0:3:
This data is for a conventional optical disk, e.g., a CD-ROM disk. The natural frequencies can be
computed from

ðKb þ Kp � o2
nMÞX ¼ 0; ð33Þ

where on is the natural frequency in the rotating frame of reference and X is the corresponding
normal mode vector.
A convergence test for the natural frequencies is carried out when O and e are not equal to zero.

The convergence of the natural frequencies of a disk with a=b ¼ 3
13
; when O¼1000 rad/s and

e=b ¼ 0:2; is presented in Table 1, which shows that the natural frequencies converge with M. In
Table 1, the mode ðm; nÞ represents a mode with m nodal circles and n nodal diameters. An
interesting phenomenon observed in Table 1 is the fact that the modes (0, 1), (0, 2) and (0, 3) have
two natural frequencies. When there is no misalignment in a disk, all the modes possess only one
natural frequency in the rotating frame of reference. However, when the disk has misalignment,
the natural frequency for the mode ðm; nÞ where na0 is split into two frequencies: the one is for
the symmetric mode and the other is for the asymmetric mode. The subscripts s and a in Table 1
stand for the symmetric and asymmetric modes, respectively. The symmetric mode is symmetric
with respect to the x-axis of Fig. 1 while the asymmetric mode is not symmetric. The misalignment
in a disk plays a role of deviation from axisymmetry. More detailed discussions about the
symmetric and asymmetric modes, which are sometimes called sine and cosine modes, can be
found in Refs. [5–8,14].
Next, the natural frequencies of a spinning are investigated for the spinning speed when

misalignment exists. Fig. 2 presents the variation of the natural frequencies for the spinning speed
in the rotating frame of reference when a=b ¼ 3

13
and e=b ¼ 0:2: Similar to the natural frequencies

for a disk without misalignment, all the frequencies monotonically increase with the spinning
speed. As pointed out above, the natural frequency of the mode ðm; nÞ where na0 split into two
frequencies when the spinning speed is not equal to zero. Fig. 2 shows that the natural frequency
corresponding to the (0, 1) mode is split into the frequencies for the symmetric mode ð0; 1Þs and the
asymmetric mode ð0; 1Þa: However, since the natural frequencies of the symmetric and asymmetric

Table 1

Convergence characteristics of the natural frequencies (rad/s) in the rotating frame of reference when a=b ¼ 3=13;
O ¼ 1000 rad/s and e=b ¼ 0:2

M Mode

(0, 0) (0, 1)s (0, 1)a (0, 2)s (0, 2)a (0, 3)s (0, 3)a

1 788.0536 1260.848 1132.911 1523.828 1524.110 1924.129 1925.393

2 773.5180 1243.861 1121.035 1515.237 1515.360 1917.959 1919.172

3 771.8546 1239.174 1118.751 1513.483 1513.717 1917.238 1918.478

4 761.4539 1239.013 1118.631 1513.410 1513.700 1917.124 1918.418

5 768.5637 1237.157 1116.963 1512.567 1512.903 1916.880 1918.205

6 768.1173 1234.892 1116.070 1511.835 1512.214 1916.768 1918.090

7 767.8218 1234.090 1115.989 1511.689 1512.136 1916.746 1918.082
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modes have very small differences in the modes (0, 2), (0, 3) and (0, 4), they do not seem to be split
into two frequencies.
The critical speeds of a disk are influenced by the misalignment. Denoting by ln the natural

frequency computed in the stationary frame of reference, the relationship between ln and on is
given by

ln ¼ on7nO; ð34Þ

where n is the number of nodal diameters. The dashed lines in Fig. 2 represent lines corresponding
to on ¼ nO: Note that the critical speed is defined by the spinning speed at which the natural
frequency in the stationary frame of reference, ln; becomes zero. Therefore, it is inferred from
Eq. (34) that the critical speed Oc is a value of O at which the line of on ¼ nO intersects with the
natural frequency curve of the ðm; nÞ mode. However, the curve of the (0, 1) mode does not
intersect with the line of on ¼ O; so there is no critical speed corresponding to the (0, 1) mode.
Fig. 3 shows the variation of the critical speed for the misalignment when a=b ¼ 3

13
: When the

misalignment changes from e 
 b ¼ 2 to e=b ¼ 0:2; the lowest critical speed, namely, the critical
speed of the (0, 2) mode, increases from 106.105 to 106.405 rad/s.
To analyze the effects of misalignment on the natural frequencies in more detail, the differences

of the natural frequencies between the disks with and without misalignment are investigated when

Fig. 4. Differences of the natural frequencies between when e=b ¼ 0:2 and when e=b ¼ 0 for the variation of the

spinning speed: (a) the (0, 0) mode; (b) the (0, 1) modes; (c) the (0, 2) modes; and (d) the (0, 3) modes. ———, symmetric

mode; ?; asymmetric mode.
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a=b ¼ 3
13
: Fig. 4 shows the ratios of Don ¼ onðe=b ¼ 0:2Þ � onðe=b ¼ 0Þ to onðe=b ¼ 0Þ versus the

spinning speed while Fig. 5 shows the ratios of Don ¼ onðe=ba0Þ � onðe=b ¼ 0Þ to onðe=b ¼ 0Þ
versus the misalignment. In Figs. 4 and 5, the solid and the dotted lines represent the symmetric
and the asymmetric modes, respectively. It is observed in Figs. 4 and 5 that the (0, 1) mode has
larger differences between the symmetric and asymmetric modes compare to the other modes. It is
also observed that these differences increase with the magnitude of the spinning speed and the
amount of misalignment.
Finally, the effects of misalignment on the mode shapes of the spinning disk are studied when

the disk with a=b ¼ 3
13
has a constant angular speed O ¼ 1000 rad/s. The mode shapes of the disk

with misalignment e=b ¼ 0:2 are shown in Fig. 6, where it is observed that the (0, 0) mode is
distorted from an axisymmetric shape and the asymmetric modes ð0; nÞa rotate from symmetric
modes ð0; nÞs: In order to scrutinize variations of the mode shapes along the outer circumference,
the mode shapes at the outer radius are presented as functions of the tangential coordinate y in
Fig. 7, where the solid and dotted lines represent the symmetric and asymmetric modes
respectively. Fig. 7 shows that the mode shapes do not remain purely harmonic in the y direction
when the disk has misalignment. It is well known that an axisymmetric disk has purely harmonic
mode shapes in the y direction. Therefore, the misalignment plays a role of deviation from

Fig. 5. Differences of the natural frequencies between when e=b ¼ 0:2 and when e=b ¼ 0 for the variation of

misalignment: (a) the (0, 0) mode; (b) the (0, 1) modes; (c) the (0, 2) modes; and (d) the (0, 3) modes. ———, symmetric

mode; ?; asymmetric mode.
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axisymmetry. This distortion from purely harmonic mode shapes, which is often called the wave
number contamination of modes was discussed by Kim et al. [7] and Chang and Wickert [8].

5. Conclusions

The equations of motion are derived for a spinning disk whose axis of symmetry is misaligned
with the axis of rotation. Assuming that the in-plane motion of the disk is in a steady state and the

Fig. 6. Mode shapes of the spinning disk with misalignment e=b ¼ 0:2 when a=b ¼ 3=13 and O ¼ 1000 rad/s.
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Fig. 7. Mode shapes of the spinning disk along the outer circumference when e=b ¼ 0:2; a=b ¼ 3=13 and O ¼ 1000 rad/s:

(a) the (0, 0) mode; (b) the (0, 1) modes; (c) the (0, 2) modes; and (d) the (0, 3) modes. ———, symmetric mode; ?;
asymmetric mode.
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out-of-plane motion is in a dynamic state, the governing equations for both the in-plane and out-
of-plane motions are derived from Hamilton’s principle. The derived equations consist of two
linear equations and a non-linear equation: the linear equations are for the in-plane motion and
the non-linear equation is for the out-of-motion. After the exact solutions for the in-plane
displacements are found, they are plugged into the non-linear equation of the out-of-plane motion
to obtain a new linear equation.
Based upon the linear equation for the out-of-plane displacement, the natural frequencies and

mode shapes of spinning disks with misalignment are studied. The results obtained from this study
can be summarized as follows:

(1) When a disk has misalignment, a natural frequency for the mode ðm; nÞ where na0 is split into
two frequencies: a frequency for the symmetric mode and a frequency for the asymmetric
mode.

(2) The (0, 1) mode has larger difference between the frequencies of the symmetric and
asymmetric modes than the other modes.

(3) The misalignment of a spinning disk results in distortion of the mode shapes, so called, the
wave number contamination of modes.

(4) The lowest critical speed of a spinning disk increases with misalignment.
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